
Interlinear text implementation in FLEx
Ken Zook August 3, 2022

This document describes the technical aspects of interlinear text in FieldWorks Language Explorer (FLEx)

in Version FW 9 and earlier versions after FW6, when FieldWorks switched to using an XML file for data

storage instead of a SQL Server database.

Interlinear text is a complex model that integrates texts with a wordform inventory and with the lexical

database. An interlinear display pulls bits and pieces from the lexicon, the wordform inventory, and

some lists to form the final display.

In this document I show views from the lexicon and interlinear text, and show the underlying objects

from the XML fwdata file. I only show relevant parts of the objects for this discussion. A more complete

model diagram which has not been updated for quite a few years is version 7

ModelDocumentation.chm. A comprehensive list of current classes and fields are in

MasterFieldWorksModel classes and fields 7000072.xlsx. Also, LCMBrowser.exe, installed in the

FieldWorks 9 program directory gives several views of the current model and shows the data structure

when you open a project file. For a more complete description of the fwdata XML structure, see

http://downloads.sil.org/FieldWorks/Documentation/FieldWorks_7_XML_model.pdf. At the end I have

a diagram showing the various connections between the classes for the simple sentence of interlinear

text. This data can be seen in the Little French FW9.0.7 project.

Lexicon
Entries (LexEntry) in the lexicon can have any number of senses (LexSense). For interlinear purposes we

only show the Lexeme Form or Allomorphs, Gloss, and Grammatical Info. We can show multiple

languages/writing systems for each of these fields, although in this example I only show one writing

system.

Lexeme Form (LexemeForm) and Allomorphs (AlternateForms) owns a MoForm subclass (usually

MoStemAllomorph or MoAffixAllomorph). To display the actual lexeme form for an entry, you need to

get the Form from the MoForm object. MoStemAllomorph or MoAffixAllomorph also have a

MorphType field that references a MoMorphType object which may have a Prefix and/or Postfix marker.

When present, these are added before and after the lexeme form. Finally, if the LexEntry has a

HomographNumber, that is appended to the result to complete the display.

Grammatical Information is stored in a subclass of MoMorphSynAnalysis (usually MoStemMsa or

MoInflAffMsa). Entries can store one or more instances of these in the MorphoSyntaxAnalyses property.

Each sense references one of the MSAs owned by its entry. MSAs are considerably more complex than

just a part of speech, but in this example, I limit it to the part of speech, which is a PartOfSpeech object

owned in the Parts Of Speech CmPossibilityList. Possibility items contain both a Name and Abbreviation

in one or more language/writing system. The lexicon data entry shows the name, and interlinear shows

the abbreviation. Dictionary views can be configured to show either one.

http://downloads.sil.org/FieldWorks/Documentation/FieldWorks_7_XML_model.pdf

Senses have many properties, but interlinear text only uses the grammatical information and the gloss.

Note that although you can have multiple languages/writing systems in a gloss, a sense only has one

gloss field. There have been discussions to add multiple translation equivalents in the future.

Note Lexeme Form and Gloss can have any number of writing systems, but they are simple strings

without embeddings.

The main entry above is represented by the following classes in the fwdata file.

<rt class="LexEntry" guid="13bf2994-ed83-40e7-a313-44334594f95b">

<LexemeForm>

<objsur guid="a66d0f19-4d33-48e6-b345-ce22c792f4a1" t="o" />

</LexemeForm>

<MorphoSyntaxAnalyses>

<objsur guid="bb673a3f-cbeb-4fc8-a071-8c3c70082685" t="o" />

</MorphoSyntaxAnalyses>

<Senses>

<objsur guid="77725752-bc2f-4c75-900f-db99dc258157" t="o" />

</Senses>

</rt>

<rt class="MoStemAllomorph" guid="a66d0f19-4d33-48e6-b345-ce22c792f4a1" ownerguid="13bf2994-

ed83-40e7-a313-44334594f95b">

<Form>

<AUni ws="fr">garçon</AUni>

</Form>

<MorphType>

<objsur guid="d7f713e8-e8cf-11d3-9764-00c04f186933" t="r" />

</MorphType>

</rt>

<rt class="MoStemMsa" guid="bb673a3f-cbeb-4fc8-a071-8c3c70082685" ownerguid="13bf2994-ed83-

40e7-a313-44334594f95b">

<PartOfSpeech>

<objsur guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" t="r" />

</PartOfSpeech>

</rt>

<rt class="LexSense" guid="77725752-bc2f-4c75-900f-db99dc258157" ownerguid="13bf2994-ed83-

40e7-a313-44334594f95b">

<Definition>

<AStr ws="en">

<Run ws="en">young male child</Run>

</AStr>

</Definition>

<Gloss>

<AUni ws="en">boy</AUni>

</Gloss>

<MorphoSyntaxAnalysis>

<objsur guid="bb673a3f-cbeb-4fc8-a071-8c3c70082685" t="r" />

</MorphoSyntaxAnalysis>

</rt>

<rt class="MoMorphType" guid="d7f713e8-e8cf-11d3-9764-00c04f186933" ownerguid="d7f713d8-e8cf-

11d3-9764-00c04f186933">

<Abbreviation>

<AUni ws="en">ubd stem</AUni>

</Abbreviation>

<Name>

<AUni ws="en">stem</AUni>

</Name>

</rt>

<rt class="PartOfSpeech" guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" ownerguid="f558e415-dad4-

4c69-a595-c9915fea6b44">

<Abbreviation>

<AUni ws="en">n</AUni>

</Abbreviation>

<Name>

<AUni ws="en">Noun</AUni>

</Name>

</rt>

The suffix entry above is represented by the following classes in the fwdata file.

<rt class="LexEntry" guid="052bec58-16d0-4fdb-9617-1ba148db23b5">

<LexemeForm>

<objsur guid="c2884d72-96f2-4a1b-a6e8-34932cfac0f7" t="o" />

</LexemeForm>

<MorphoSyntaxAnalyses>

<objsur guid="b879f06f-a612-4195-8b47-15c9b4eacadd" t="o" />

</MorphoSyntaxAnalyses>

<Senses>

<objsur guid="37cfcd18-136a-45e6-8dd6-15db22c774ac" t="o" />

</Senses>

</rt>

<rt class="MoAffixAllomorph" guid="c2884d72-96f2-4a1b-a6e8-34932cfac0f7" ownerguid="052bec58-

16d0-4fdb-9617-1ba148db23b5">

<Form>

<AUni ws="fr">s</AUni>

</Form>

<MorphType>

<objsur guid="d7f713dd-e8cf-11d3-9764-00c04f186933" t="r" />

</MorphType>

</rt>

<rt class="MoInflAffMsa" guid="b879f06f-a612-4195-8b47-15c9b4eacadd" ownerguid="052bec58-16d0-

4fdb-9617-1ba148db23b5">

<PartOfSpeech>

<objsur guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" t="r" />

</PartOfSpeech>

</rt>

<rt class="LexSense" guid="37cfcd18-136a-45e6-8dd6-15db22c774ac" ownerguid="052bec58-16d0-

4fdb-9617-1ba148db23b5">

<Gloss>

<AUni ws="en">PL</AUni>

</Gloss>

<MorphoSyntaxAnalysis>

<objsur guid="b879f06f-a612-4195-8b47-15c9b4eacadd" t="r" />

</MorphoSyntaxAnalysis>

</rt>

<rt class="MoMorphType" guid="d7f713dd-e8cf-11d3-9764-00c04f186933" ownerguid="d7f713d8-e8cf-

11d3-9764-00c04f186933">

<Abbreviation>

<AUni ws="en">sfx</AUni>

</Abbreviation>

<Name>

<AUni ws="en">suffix</AUni>

</Name>

<Prefix>

<Uni>-</Uni>

</Prefix>

</rt>

Interlinear Text Baseline
FLEx allows any number of Text objects for displaying interlinear text. A Text has a Name in any number

of writing systems, and owns a single StText object which holds any number of StTxtPara objects.

StTxtPara has a Contents property which holds a FieldWorks string which can have embeddings. Only

one writing system is used for the baseline. Any embedded writing systems will not allow

interlinearization and will be lumped with punctuation in PuncuationForm objects.

The Baseline display simply prints the Contents of each StTxtPara with a paragraph break between each

one.

The baseline for this interlinear text is represented by the following classes in the fwdata file.

<rt class="Text" guid="754a048e-48a1-4b4e-92de-20897834f630">

<Contents>

<objsur guid="e1461362-6de5-42c9-a644-ac0f52c01d79" t="o" />

</Contents>

<Name>

<AUni ws="en">Boys test</AUni>

</Name>

</rt>

<rt class="StText" guid="e1461362-6de5-42c9-a644-ac0f52c01d79" ownerguid="754a048e-48a1-4b4e-

92de-20897834f630">

<Paragraphs>

<objsur guid="9007af3e-0ff3-46c1-812a-d68704968f43" t="o" />

</Paragraphs>

</rt>

<rt class="StTxtPara" guid="9007af3e-0ff3-46c1-812a-d68704968f43" ownerguid="e1461362-6de5-

42c9-a644-ac0f52c01d79">

<Contents>

<Str>

<Run ws="fr">Garçons garçons garçons.</Run>

</Str>

</Contents>

<Segments>

<objsur guid="cd4f5759-5cdc-450f-9094-884136d8fe51" t="o" />

</Segments>

</rt>

Interlinear Text Analysis
Interlinear texts show information from the baseline, from a wordform inventory, and from the lexicon.

In addition to Contents, a StTxtPara also owns a sequence of Segment in the Segments property. The

baseline is automatically broken into segments based on period, question mark, exclamation point, and

section mark. So normally a segment represents one sentence in the baseline.

A Segment has a BeginOffset value to show where the segment starts in the StTxtPara Contents string. It

holds a sequence of pointers in the Analyses property. These pointers indicate the level of

interlinearization that has been approved by the user. The example shown here has the same word

which is analyzed to different levels. Default analyses are shown in blue until the user confirms the

analysis.

The first word has not had any analysis, so it shows the proposed analysis that comes from previous

analyses. The only part that is confirmed here is the WfiWordform which happens automatically when a

baseline is modified. The Analyses pointer for this unanalyzed state is a pointer to the WfiWordform.

The second word has had lexical analysis approved, but no word glosses. At this point the user has

broken the word into morphemes, and each morpheme is connected to a sense in the lexicon. The

Analyses pointer for this word is to a WfiAnalysis owned by the WfiWordform.

The third word is fully analyzed and includes a Word gloss and Word category. The Analyses pointer for

this word is to the WfiGloss object owned by the WfiAnalysis. All words in the interlinear text baseline

are assigned to one of these levels.

Any punctuation or embedded writing systems are represented by a pointer to a PunctuationForm. The

Form of this PunctuationForm holds a string representing a single punctuation mark, a cluster of

punctuation marks, or text in an embedded writing system.

The interlinearization for this interlinear text is represented by the following classes in the fwdata file.

<rt class="Segment" guid="cd4f5759-5cdc-450f-9094-884136d8fe51" ownerguid="9007af3e-0ff3-46c1-

812a-d68704968f43">

<Analyses>

<objsur guid="1dd8cf5c-beb0-4463-9b51-9b98e47b7879" t="r" />

<objsur guid="ccaad034-ad7f-4d16-a547-9cd8ca845365" t="r" />

<objsur guid="13f9d3fa-70be-473b-ac2a-4ee1d215d5be" t="r" />

<objsur guid="a5ec72fa-99d8-49a0-bca3-ec29a52db3fc" t="r" />

</Analyses>

<BeginOffset val="0" />

<FreeTranslation>

<AStr ws="en">

<Run ws="en">Boys boys boys.</Run>

</AStr>

</FreeTranslation>

</rt>

The punctuation and any text that is not in the primary writing system in the baseline is represented by

the following class in the fwdata file, which covers the period at the end of the sentence.

<rt class="PunctuationForm" guid="a5ec72fa-99d8-49a0-bca3-ec29a52db3fc">

<Form>

<Str>

<Run ws="fr">.</Run>

</Str>

</Form>

</rt>

Wordform Inventory
Text in the main writing system of the baseline is broken up into wordforms. The wordforms are stored

in the wordform inventory in WfiWordform objects, and in the Analyses section of the Segment there

are pointers to the WfiWordform until they are analyzed further.

During analysis, the user can select to use the entire word, or they can break it up into morphemes. This

information is stored in a WfiAnalysis object owned by the WfiWordform. The next step is to connect

each morpheme to a sense in a lexical entry. The user is able to create new entries, allomorphs, or

senses in this phase.

For each morpheme, a WfiMorphBundle is added to the WfiAnalysis in the MorphBundles property.

When first created, the form the user specified for the morpheme is stored in the Form of the

WfiMorphBundle. As the user creates and/or selects an entry, the Morph pointer is set to the MoForm

of the LexemeForm or AlternateForms of the LexEntry. When a sense is chosen from that entry, the

Sense property is set to the LexSense, and the Msa pointer is set to the MSA pointed to from the

MorphoSyntaxAnalysis reference property on Sense.

If a user specifies a different set of morphemes, or different analyses, a new WfiAnalysis is created and

filled in as above.

When the user fully analyzes the word, they can set the Category on WfiAnalysis to a PartOfSpeech for

the entire word. They can also add a word gloss. The word gloss goes into a WfiGloss object owned by

the WfiAnalysis in the Meanings property. Each WfiGloss can have a Form in multiple writing systems.

It’s possible to have more than one word gloss, so WfiAnalysis owns a sequence of WfiGloss objects.

During full analysis the user can choose which gloss they want for this particular instance of a wordform.

This is why the Analyses pointer goes to a WfiGloss at the fully analyzed state.

There are two parsers built into FLEx that can do automatic parsing. These parsers will use the lexicon

and grammar to go through wordforms and create possible analyses including the Morph and Msa

pointers. It then flags the analysis as a parser approved or disapproved parse.

The wordform and analysis of garçons is represented by the following classes in the fwdata file.

<rt class="WfiWordform" guid="1dd8cf5c-beb0-4463-9b51-9b98e47b7879">

<Analyses>

<objsur guid="ccaad034-ad7f-4d16-a547-9cd8ca845365" t="o" />

</Analyses>

<Form>

<AUni ws="fr">garçons</AUni>

</Form>

<SpellingStatus val="1" />

</rt>

<rt class="WfiAnalysis" guid="ccaad034-ad7f-4d16-a547-9cd8ca845365" ownerguid="1dd8cf5c-beb0-

4463-9b51-9b98e47b7879">

<Category>

<objsur guid="a8e41fd3-e343-4c7c-aa05-01ea3dd5cfb5" t="r" />

</Category>

<Evaluations>

<objsur guid="8caa11bb-cac4-4836-a081-1666245106b9" t="r" />

</Evaluations>

<Meanings>

<objsur guid="13f9d3fa-70be-473b-ac2a-4ee1d215d5be" t="o" />

</Meanings>

<MorphBundles>

<objsur guid="9ef5cf19-f055-4df8-9b32-bee07367d8a3" t="o" />

<objsur guid="70550026-e174-4bee-98c5-914ee31a5c11" t="o" />

</MorphBundles>

</rt>

<rt class="WfiGloss" guid="13f9d3fa-70be-473b-ac2a-4ee1d215d5be" ownerguid="ccaad034-ad7f-

4d16-a547-9cd8ca845365">

<Form>

<AUni ws="en">boys</AUni>

</Form>

</rt>

<rt class="WfiMorphBundle" guid="9ef5cf19-f055-4df8-9b32-bee07367d8a3" ownerguid="ccaad034-

ad7f-4d16-a547-9cd8ca845365">

<Form>

<AStr ws="fr">

<Run ws="fr">garçon</Run>

</AStr>

</Form>

<Morph>

<objsur guid="a66d0f19-4d33-48e6-b345-ce22c792f4a1" t="r" />

</Morph>

<Msa>

<objsur guid="bb673a3f-cbeb-4fc8-a071-8c3c70082685" t="r" />

</Msa>

<Sense>

<objsur guid="77725752-bc2f-4c75-900f-db99dc258157" t="r" />

</Sense>

</rt>

<rt class="WfiMorphBundle" guid="70550026-e174-4bee-98c5-914ee31a5c11" ownerguid="ccaad034-

ad7f-4d16-a547-9cd8ca845365">

<Form>

<AStr ws="fr">

<Run ws="fr">s</Run>

</AStr>

</Form>

<Morph>

<objsur guid="c2884d72-96f2-4a1b-a6e8-34932cfac0f7" t="r" />

</Morph>

<Msa>

<objsur guid="b879f06f-a612-4195-8b47-15c9b4eacadd" t="r" />

</Msa>

<Sense>

<objsur guid="37cfcd18-136a-45e6-8dd6-15db22c774ac" t="r" />

</Sense>

</rt>

The FLEx LangProject currently has four CmAgents owned in AnalyzingAgents. Current agents are

M3Parser, HCParser, Computer, and default user. Each CmAgent owns 2 CmAgentEvaluations; one in an

Approves property and one in the Disapproves property. Here’s the default user agent.

<rt class="CmAgent" guid="9303883a-ad5c-4ccf-97a5-4add391f8dcb" ownerguid="e6c446c7-bd0b-

42ab-a4d4-776d3ae7876f">

<Approves>

<objsur guid="8caa11bb-cac4-4836-a081-1666245106b9" t="o" />

</Approves>

<Human val="True" />

<Name>

<AUni ws="en">default user</AUni>

</Name>

</rt>

<rt class="CmAgentEvaluation" guid="8caa11bb-cac4-4836-a081-1666245106b9"

ownerguid="9303883a-ad5c-4ccf-97a5-4add391f8dcb" />

WfiAnalysis refers to one or more CmAgentEvaluations in an Evaluations property. Thus, when a user

approves an analysis, the Evaluations property references the approved CmAgentEvaluation for default

user. This normally happens in the Interlinear Analyze view when a user approves an analysis. A user can

also change the user analysis status by right-clicking the analysis in Wordform Analyses and selecting the

User Option from Approve, Unknown, or Disapprove.

• When Unknown is selected, the analysis does not have any CmAgentEvaluation references to the

default user CmAgent and the analysis shows under “User Opinion Unknown (Analysis Candidates)”

section of the Wordform Analysis view.

• When Approve is selected, The approved CmAgentEvaltuation for default user is added to the

WfiAnalysis Evaluations property and the analysis shows under the “User Approved (Analyses)”

section of the Wordform Analysis view.

• When Disapprove is selected, The disapproved CmAgentEvaltuation for default user is added to the

WfiAnalysis Evaluations property and the analysis shows under the “User Disapproved (Test Case

Analyses)” section of the Wordform Analysis view.

When a parser approves an analysis, the analysis Evaluations property references the Approves

CmAgentEvaluation for the parser CmAgent. This status is shown in the Parse result field in the

Wordform Analyses as “Successful”. When the parser disapproves an analysis, the analysis Evaluations

property references the Disapproves CmAgentEvaluation for the parser CmAgent. This status is shown in

the Parse result field in the word analyses as “Failure”. When analysis does not have any references to

the parser CmAgentEvaluation for the parser CmAgent, the Parse result field shows “Untested”.

The diagram on the next page lists all of the instances of classes that are used to complete this

interlinear example including the lexicon, wordform inventory, and text classes. The numbers are the

first part of the guids from the XML classes above.

The actual display of interlinear text is controlled through Tools…Configure…Interlinear. This determine

which fields are being shown and which writing systems to use for each one.

